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IRCCYN/École des Mines de Nantes
La Chantrerie – 4, rue Alfred Kastler – BP 20722

F-44307 Nantes CEDEX 3 – France
l.rigal,bruno.castanier,philippe.castagliola@emn.fr

Abstract. In this article we propose to introduce a new selection pa-
rameter in Genetic Algorithms (GAs) for a class of constrained reliability
design problems. Our work demonstrates two major points. The first one
is that the populations are quickly included in the space of the feasible
solutions for a sufficiently large selection of parameter value. The second
one is that the value of the selection parameter controls the exploration
strategy of the feasible space. These two properties illustrate that an
adapted choice of the selection parameter value allows to improve the
performance of GA. Furthermore, our numerical examples tend to show
that, with an adapted choice of the selection parameter, these GAs are
in practice more efficient than previously proposed GAs for this class of
problems.

1 Introduction

Over the last few decades, due to the number of occurring accidents, safety has
taken an increasingly significant role. Intense research has been carried out to
obtain optimal safety system at minimal cost. In this paper we are interesting
in a class of Reliability Design Problems (RDP) described in [7], [10]. These
problems deal with the system structure and component choice optimization in
order to obtain the best compromise between system reliability and cost. These
problems are most frequently NP-hard. If conventional optimization tools, for
example, integer programming, Lagrangian method, dynamic programming [9]
are often ineffective, the use of GAs, in the RDP, provide some promising results.
But in practice GAs are extremely complex to use because of the parameter tun-
ing and the existence of many different ways to apply the mutation crossing-over
and selection process [13]. The analysis of the given solutions usually requires
an important experience in GAs practice. At the end, the choice of a partic-
ular GA is usually based on heuristic approaches, empirical results and GAs
expert judgements. As far as we know, few theoretical works are related to the
study of the performance of GA. Most of them [1], [2], [11], [12], [14] propose a
modelisation based on Markov theory in order to describe its stationary prop-
erties. None of these studies prove that the population of GA converge towards
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a population only constituated by solutions which are global optimum even if
the number of generations tends to infinity. By extending some classical results
on Simulated Annealing [4], [5] to GA, Cerf [6] proves this convergence of a new
GA with three parameters allowing the control of a specified cooling-schedule.
However, the application of this new GA might vary a lot from one problem to
another and seems to be very complicated to implement and to use. As far as
we know this GA has never been implemented. Nevertheless, practical-oriented-
studies seem to confirm that the time-dependent assumption for the parameters
in Evolutionary Algorithms (EAs) is well fitted [18]. The choice and the design
of optimal time-dependent parameters function are at least as difficult to find
the best static as parameters. But in practical studies, they have proven their
efficiency at least, with EA. The idea of letting the algorithm adjust its own pa-
rameters for free is indeed appealing [18]. The realistic formulation of RDP leads
to generally constrained or highly constrained problems. However the application
of GA on highly constrained optimization problem could fail to give the right
solution, i.e. the optimal or nearly optimal solution [15]. Different approaches
are used in order to improve the GA performance like repair operators and spe-
cific penalty functions. Because the repairs operators method is not well-fitted
to our problems [10], we decide to adopt the penalty approach which seems to
give promising results. There are three different ways to apply penalty methods
in the selection process [17] : the static method, the dynamic method [16] which
modifies the penalty coefficient along the evolution according to a user-defined-
schedule and the adaptive method which gleans information from the population
in order to update the value of penalty functions. All these methods focus on the
tuning of the penalty function to access more rapidly to the feasible space. These
approaches are particularly interesting to find a first feasible solution when the
proportion of feasible solutions is very small (approximately less than one pour-
cent). When the proportion of feasible solutions increases, upper than 10%, the
control of the selection force, allows to direct the population very quickly in the
feasible space. In fact, if the size of the feasible space is large, the exploration
strategy of the feasible space has an important impact on the efficiency of the
GA. In this article we propose to demonstrate that the selection parameter give
the possibility to choose different exploration strategies of the feasible space.
Consequently an adapted choice of this selection parameter allows to improve
the efficiency of the GA. Our main goal is to propose both an efficient and practi-
cal optimization tool for constrained problems particularly encountered in RDP.
In the first section, a modelisation of the GA proposed in [9] for a practical RDP
based on Markov theory allows to characterize all the different steps of a GA
and, particularly, the crossing-over. It is interesting to underline that, as far as
we know, this is the first time that this crossing-over process has been modelled.
This crossing-over is very difficult to model because of the addition of a random
number of children. In the second section, we explain why and how we modify
GA. In the third section, we apply the theory developed in [3] [6] on optimization
problems with particular space structures in order to demonstrate the efficiency
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of the proposed GAs. Finally in the last section, we present some asymptotical
results of modified GA performance, illustrated by a numerical comparison.

2 Mathematical Model of the Classical GA

A general optimization problem is the maximization of an objective function
f : E → [1; +∞[ subject to several constraints. The solution space E can be
partitioned into the feasible solution space ER and the unfeasible solution space
ĒR. Let Xn be the population at the n-th iteration. A realization of the random
population Xn is a sequence of m solutions x = (x1, x2, . . . , xm) ∈ Em where
xi ∈ E, i = 1, . . . , m is a vector of L binary variables (0 or 1) and denoted xi =
(x1

i , x
2
i , . . . , xL

i ). Let P (Xn+1 | Xn) be the one-step probability transition matrix.
A one-step transition from Xn to Xn+1 is divided in three distinct phases: the
mutation process, the crossing-over process and the selection process. Hence, the
evaluation of the probability matrix P (Xn+1 | Xn) requires the characterization
of each process.

2.1 Modeling of the Mutation Process

A mutation is a switch of a bit from 0 to 1 (or 1 to 0) with a given probability pm

(with 0 < pm < 1). Let Un be the random population obtained after the mutation
process of the population Xn, and u be the associated realization vector where
u = (u1, u2, . . . , um) ∈ Em. The mathematical expression of the probability to
obtain ui after carrying out the mutation process on xi is determined in [14]. Let
d be the Hamming distance. The expression of the mutation process transition
matrix α from Xn to Un is, ∀(x, u) ∈ Em × Em :

α(x, u) =
m∏

i=1

pd(x1,u1)
m︸ ︷︷ ︸

mutation

× (1 − pm)L−d(x1,u1)

︸ ︷︷ ︸
no mutation

2.2 Modeling of the Crossing-over Process

The considered crossing-over process recombines the pair of consecutive chromo-
somes with probability pc in order to generate new chromosomes namely children
by applying the classical one-point crossing-over rule described in page 6 of [13].
Let COK(u1, u2) be the two children generated by the one point crossing-over
process applied on two chromosomes (u1, u2), given the cut site K. One can
remark that not all the couples generate two children. If a couple (u2i−1, u2i)
does not generate, we then introduce two ”virtual” chromosomes called ”empty
chromosome” denoted v∅. Note that, if the solution space dimension m is odd,
the last chromosome um remains alone and, according to this new notation, gen-
erates an empty chromosome v∅ . Let E∅ = E ∪ {v∅} be the extended solution
space. Let βE2 be the probability to obtain (v1, v2) after carrying out one point
crossing-over process on (u1, u2) :
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βE2 : E2 × (E∅)2 → IR+

((u1, u2), (v1, v2)) �→ pc

L − 1

L−1∑

k=1

δ2(COK(u1, u2); (v1, v2))

︸ ︷︷ ︸
expression1

+ (1 − pc).δ2((v∅, v∅); (v1, v2))︸ ︷︷ ︸
expression2

(1)

where δj is a comparison function of 2 vectors of the same length j defined
by, ∀j ≤ m,

δj : Ej
∅ × Ej

∅ → IR+

((u1, . . . , uj); (v1, . . . , vj)) �→
{

1 if ui = vi, ∀i ≤ j
0 else

The two expressions in the right side of equation (1) correspond to :

– expression 1: the probability that the couple of parents (u1, u2) generates
the children (v1, v2), in respect with the cutting site K.

– expression 2: the probability that no reproduction occurs with the couple
(u1, u2).

In order to completely characterize the crossing-over process, we only have to
consider all the opportunities for the one-point crossing-over. Let Vn be the ran-
dom population obtained after the crossing-over process of the population, and
v be the associated realization vector. The crossing-over process is characterized
by the transition matrix β from Un to Vn defined by, ∀(u, v) ∈ Em × (E∅)m:

β(u, v) =
∏

1≤i≤p

βE2

(
(u2i−1, u2i), (v2i−1, v2i)

)
If m = 2p

β(u, v) = δ1(vm, v∅)
∏

1≤i≤p

βE2

(
(u2i−1, u2i), (v2i−1, v2i)

)
If m = 2p + 1

2.3 Modeling of the Selection Process

The selection process consists in creating a new population Xn+1 by applying the
proportional selection described in [14] on the population composed of Un and
Vn. Because of the introduction of v∅, we have to extend the objective function
f to f∅ defined by:

f∅ : E∅ → IR+

s �→
{

f(s) if s ∈ E
0 if s = v∅

Let z = (z1, z2, . . . , z2m) ∈ Em × Em
∅ be a vector of the global population

Un ×Vn and F be the probability to select the individual zk from the population
z = (z1, z2, . . . , z2m):

F : {1, . . . , 2m} × Em × Em
∅ → IR+

(k, z1 . . . , z2m) �→ f∅(zk)
∑2m

j=1 f∅(zj)
(2)
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It can be demonstrated that the selection process is described by the transi-
tion matrix γ :

∀(y, z) ∈ Em × (
Em × Em

∅
)
, γ(z, y) =

m∏

r=1

[ ∑

k:zk=yr

F (k, z)
]

(3)

2.4 Characterisation of the Classical GA

Finally, with the evaluation of the the probabilities α, β γ and, considering all
possible paths between the population Xn and Xn+1, we can define the one step
transition probability of the classical GA:

P (Xn+1 = y | Xn = x) =
∑

(u,v)∈Em×Em
∅

α(x, u)β(u, v)γ
(
(u, v), y

)

With the proposed modeling, we can easily demonstrate that this classical
GA does not converge as previously demonstrated in [6], [12].

3 Introduction of a Selective Force Parameter

The purpose of this section is to propose a modified GA that quickly directs its
research towards a part of the space which may contain the optimal solution.
The modified GA that we propose is based on the results on simulated annealing
[5] and on GAs [6]. In order to control the search, we have decided to introduce
a new parameter � which can be seen as the force to select the solutions in the
population Un × Vn. Thus in the same way that we try to optimize the function
f , we are going to obtain the maximization of the following function :

f∅,� : E∅ → IR+

s �→
{

exp(ln(f(s))�) if s ∈ E
0 if s = v∅

The entire selection process remains the same one excepted for the mathematical
expression of the objective function. Thus we deduce the mathematical expres-
sion of F� and γ� which are respectively the proportional selection probability
and the matrix transition associated to � by remplacing respectively in the ex-
pression 2 f∅ by f∅,� and by remplacing in the expression 3 F (k, z) by F�(k, z).

The mutation and reproduction transition matrices do not change. We denote
by X�

n the population associated to the modified GA with the selection parameter
�. The transition probability of the chain (X�

n)n≥0 is given by: ∀� ≥ 1,

P (X�
n+1 = x | X�

n = y) =
∑

(u,v)∈Em×Em
∅

α(x, u)β(u, v)γ�

(
(u, v), y

)

Let us define the set D(y) of all the couples (u, v) which join any point x to
y by:

D(y) = {(u, v) ∈ Em × Em
∅ , α(x, u)β(u, v)γ�

(
(u, v), y

)
> 0}

= {(u, v) ∈ Em × Em
∅ , β(u, v) > 0 and [(u, v)] ⊇ [y]}
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Where [y] represents the chromosomes of the vector y. With this notation, we
can have:

P (X�
n+1 = x | X�

n = y) =
∑

(u,v)∈D(y)

α(x, u)β(u, v)γ�

(
(u, v), y

)
(4)

The introduction of the parameter � does not change the properties of the
Markov chain and consequently (X�

n)n≥0 is an homogenous, irreducible, aperi-
odic Markov chain that admits an unique invariant probability measure µ�.

If we increase the value of the selection parameter, the associated modified
GA is more selective. In order to study the asymptotical behavior of the Modified
GA, we propose to focus on the two extreme cases � = 1 and � = +∞.

If � = 1, the modified GA is simply the Classical GA. Because of its propor-
tional selection process, the major drawback of this algorithm, for our specific
RDP, is that it conserves in the current population many solutions which do not
satisfy the constraints. This is particularly important when the feasible space
solution is very small compared to the whole solution space. Consequently this
GA consumes a lot of time in treating unfeasible solutions.

When � tends to infinity, the respective transition probabilities of the mutation
and crossing over process do not change. On the other hand, the selection process
tends towards a transition probability γ+∞ which can be proven to be:

γ+∞
(
z, y

)
= lim

�→+∞
P

(
X�

n+1 = y| (U �
n,V �

n) = z
)

=
m∏

r=1

1ẑ(yr)z(yr)
|ẑ| (5)

Where, ∀z = (z1, . . . , z2m) ∈ Em × Em
∅ , we have:

– ẑ = {zk : 1 ≤ k ≤ 2m, zk ∈ E, f(zk) = f̂(z)} with f̂(z) =
max{1≤k≤2m, zk∈E} f(zk)

– ∀i ∈ E, z(i) = |{1 ≤ k ≤ 2m, zk = i}|
– 1ẑ(yk) is zero if yk belongs to ẑ and zero if not.

This GA has a well adapted property for our specific reliability design prob-
lem. The proof of equation (5) is not given here but this one can be interpreted
as follow : if there exists in the current population (Un ×Vn) at least one feasible
solution then all the population Xn+1 after the selection process is necessarily in
the feasible space solution. Nevertheless, its exploration strategy of the feasible
space could be not adapted for some problems because of the elimination after
the mutation and crossing-over process, of all the feasible solutions which are not
an optimal solution of the population. Nevertheless, in the next section we are
going to prove that it is possible to determine a group of GA appropriated for
eliminating unfeasible solutions where each of these GAs has a different strategy
of the feasible space exploration.
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4 Performance of the Modified GAs for a Class of RDP

We propose in the first subsection 4.1 to characterize the asymptotical behav-
ior of the modified GA. This approach allows us to deduce how the selection
parameter direct the strategy of the whole exploration space. Consequently, we
clearly show, that a sufficiently large value of the selection parameter � allows to
eliminate very quickly the unfeasible solutions. And at the same time, the value
of the selection parameter could determine a feasible space exploration strategy
which favours the diversity or, on the contrary, which favours the intensification
towards the best solution of the feasible space. Finally, in the subsection 4.2, by
underlining the correspondance between the length of the population and the
value of the selection force parameter �, we demonstrate that the modified GA
will be able to concentrate very quickly its search in the restricted area of the
feasible solutions.

4.1 Asymptotical Behavior

In this subsection, a study of the behavior of modified GAs probability transition
when � is large is presented. By transposing the reasoning proposed in [6] p. 55–
57 to our modelisation, we can demonstrate that:

P (X�
n+1 = y | X�

n = x) ∝
�→+∞

exp(−V ∗(y) �) (6)

Where

V ∗(y) = min(u,v)∈D(y)

m∑

k=1

[
ln(f̂(u, v)) − ln(f(yk))

]
(7)

This quantity is not null only for populations verifying V ∗(y) = 0. Conse-
quently, when � becomes very large, all the population y which has a strictly
positive value of V ∗(y) tends to be eliminated. And we can also demonstrate:

Lemma 1.
∀y ∈ Em, V ∗(y) = 0 ⇔ y ∈ S

Finally, with the proposition (1.15) p. 19 in [5] we can easily demonstrate that
lim

�→∞
µ�(y) > 0 ⇔ y ∈ S and so, the modified GA may concentrates its explo-

ration towards the population which are in S.
However, we prefer a GA which concentrates quickly its search towards the

populations composed of the best feasible solutions. The equation 6 illustrates,
that when the value of � increases, the search is directed towards the populations
y with smallest value of V ∗(y). Let G be the set of the populations which contain
at least one unfeasible and one feasible solution. We assume that a static penalty
method is used. Because of the large value of the static penalty, it can be shown
that:

∀y1 ∈ G, ∀ye �∈ G, V ∗(y1) >> V ∗(y2)
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Consequently, for any sufficiently large value of �, GA eliminates the population
contained in G. In the next subsection, with any sufficiently large value of m,
we prove that this property allows to eliminate the unfeasible solutions. Thus,
for any sufficiently large values of � and m, GA concentrates its search towards
the feasible solutions. Furthermore, in RDP, for any feasible solution, the corre-
sponding objective function f is equal to the reliability of the system plus one.
The values of f are in [1, 2]. Thus, for any population composed only of feasible
solutions, the value of V ∗(y) is small. Consequently, because of the equation 6,
if the value of � is not too large it seems to be possible to keep in the popula-
tion of GA a variety of feasible solutions. However, if we increase the value of �,
the exploration of the feasible solutions space becomes more selective. Finally,
in tuning different large values of �, we obtain GAs that eliminate unfeasible
solutions. And the exploration strategy for such GAs in the feasible space favors
more or less the population diversity.

4.2 New GAs That Concentrate Quickly Their Search towards the
Space of the Feasible Solutions

The aim of this subsection is to propose a GA which eliminate the unfeasible
solutions with a probability close to one after only one iteration (Theorem 1). For
that, we observe that the set of the population which contains some unfeasible
solutions can be partioned into two sets. The first set contains at least one
unfeasible and one feasible solution.

As we have already said in the last subsection, for a sufficiently large value
of �, the population which belongs to the first group can be eliminated. In order
to eliminate the population which belongs to the second group composed only
by the unfeasible solutions, we suggest to use the fact that the feasible solution
space ĒR is very small compared to the whole space solution E. The uniform
distribution of the initial population X0, permit to obtain:

P (X0 ∈ ĒR
m) =

( |ĒR|
|E|

)m
> 0

which will tend to zero when the value of m tends to infinity. Hence we have
∀ε > 0, ∃m ∈ IN, P (X0 ∈ ĒR

m) < ε
2 . This last property is exactly the same for

the population U0 because of the conservation of the uniform distribution after
the mutation process. So we have:

P (U0 = u) =
∑

v∈Em
∅

P
(
(U0, V0) = (u, v)

)
=

1
|E|m →

m→+∞ 0 (8)

By a similar demonstration in [6] p. 55, we can demonstrate that if the
population (u, v) contains at least one feasible solution and the population y is
composed only with unfeasible solutions, we have:

lim
�→∞

P
(
X�

1 = y | (U �
0 , V �

0 ) = (u, v)
)

= 0
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By using equations (4) and (8), ∀y ∈ ĒR
m, ∀� ≥ 1 we can easily demonstrate:

P (X�
1 = y) ≤

∑

(u,v)∈Em\ĒR
m×Em

∅
[y]⊆[u,v]

P
(
X�

1 = y | (U �
0 , V �

0 ) = (u, v)
)

|E|m + P (X0 ∈ ĒR
m)

Hence, we have proven that the probability P (X�
1 = y) tends to zero when �

and m tend to +∞ for all populations that just contain the unfeasible solutions.
We have to remind that we have proven at the beginning of this subsection, that
this result is also true for populations containing at least one unfeasible and one
feasible solutions for any m. Finally, we have proven that :

Theorem 1. ∀ ε > 0 ∃mε > 0 , ∃ �ε > 0 : ∀ y ∈ Em, {y} ∩ ĒR
m �= ∅,

∀ m ≥ mε, ∀� ≥ �ε

P (X�
1 = y) ≤ ε �
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(a) Classical Selective GA

4.3 Numerical Results

In order to illustrate the effectiveness of our new GAs for constrained RDP
problem, we will deal with a numerical example described in [8]. This example is
a problem for distributing redundant units in order to maximize the reliability of
a system subject to three non-linear and separable constraints. The choice of this
example is motivated by the fact that this problem belongs to the well-know class
of RDP [7] where the reliability expression are available [7]. We propose to apply
three different GAs for solving this example the Modified GA with a large value
of the selection force parameter (� = 150), the Modified GA with a very large
value of the selection force parameter (� = 1000) and the “Classical Selective
GA” which is very similar to a GA frequently used to solve these problems and
described in [8]. These two GAs have exactly the same selection process. This
selection process uses a static penalty method which sets the fitness value of any
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(c) Modified GA with �=1000

Fig. 1. Probabilities to obtain the optimal solution after 20 generations when pm and
pc vary from 0 to 1 - parameters: population size = 100 - number of trials = 1000

unfeasible solution equal to −9999. The process of selecting the chromosomes in
order to form the population of the next generation is completely deterministic.
It selects m chromosomes from the current population and the set of offspring
together in decreasing order of the fitness values. The mutation and crossing over
process are described respectively in the Subsection 2.1 and in the Subsection
2.2. The Fig.1(b), 1(c) and 1(a) show the respective probabilities for the Modified
GA with � = 150, the Modified GA with � = 1000, and the “Classical Selective
GA” to obtain the optimal solution in a given number of generations when the
mutation and crossing-over probabilities vary from 0 to 1. To obtain these results,
the experiments are carried out by applying this three GAs with a population
size of 100 chromosomes, the number of generations is 20 for given pm, pc and the
same codage as proposed in [8]. The probability to obtain the optimal solution
has been estimated by computing the average of successful experiments on 1000
trials. The feasible space is composed of 262144 solutions. The proportion of
the feasible solutions is 20.8%. Thus, it is strongly possible that in a population
of 100 chromosomes, there is at least one feasible solution. The solutions are
coded with 18 bits and more than 90% of the feasible solutions have between
six and nine bits coded by one. Thus the mutation and crossing-over process
apply on feasible solutions seem to be able to generate new feasible solutions.
Consequently, to explore the space of feasible solutions it seems to be more
appropriated to have a population constituated only by feasible solutions after
the selection process. However, the population of the “Classical Selective GA”
after the selection process are composed by many unfeasible solutions, because
of the deterministic aspect of the selection process. On the contrary, for any
sufficiently large value of the selection parameter, Modified GAs allows to obtain
a population after the selection process only composed of feasible solutions. Thus,
Modified GA seems to be more appropriated for this numerical problem than the
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“Classical Selective GA”. This is illustrated by the results which demonstrate
for sufficiently large value of �, that modified GA obtain a better performance
than the “Classical Selective GA” for any value of pc and any value of pm in the
interval [0, 0.2]. Thus, the application of the modified GA is more easier because
of the determination of the appropriated values of pm and pc. It is interesting
to underline that the superiority of these new GAs should be more important
for larger problems. We also remark, when the value of � increases, that the
results of Modified GA are improved. Obviously when � is equal to 150 all the
unfeasible solutions in the population of Modified GA are quickly eliminated.
Thus the increasing of the selection parameter value to 1000, seems to have no
consequence on the elimination of the unfeasible solutions. On the contrary this
increasing seems to have an important impact on the strategy of the feasible
space exploration. The selective strategy seems to be the most appropriated
strategy of the feasible space exploration.

5 Conclusion

In this paper, we have proven that an adapted choice of the selection parameter
� allows to obtain the elimination of the unfeasible solutions with a very high
probability, near to one, and allows to obtain an efficient strategy of the feasible
space exploration. This last aspect, when the size of the feasible space is large,
makes possible to decrease the time of computation. Consequently, for RDP,
where the proportion of feasible solutions is not too small, an adapted choice
of the selection parameter seems to lead GA more quickly to the convergence.
In addition the selection parameter is used exactly in the same way that the
mutation and the crossing-over probability. Consequently, for the users of GA,
it is very easy to change the strategy of the space exploration by tuning differ-
ent values of the selection parameter. Nevertheless, it is difficult to determine
exactly the value of the selection parameter. Thus, it turns out to be clear that
further theoretical and experimental studies could improve the performance of
GA for this kind of problems. Finally, it is also interesting to extend this work
to optimization problems which have a solution space which contains several
disjoint feasible subspaces of solutions.
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